Окружность радиусом R разбита в отношении 1:2:3 и точки дробления соединены

Окружность радиусом R разделена в отношении 1:2:3 и точки дробления соединены фондами. Отыскать периметр приобретенного треугольника.

Задать свой вопрос
1 ответ
Пусть х - длина одной доли, тогда
1х - длина одной дуги, 2х - длина 2-ой дуги, 3х - длина третьей дуги окружности.
х+2х+3х=360
6х=360
х=360:6
х=60
Означает, 60 - длина одной дуги, 120 - длина 2-ой дуги, 180 - длина третьей дуги окружности.
У нас вышел треугольник имеющий угол, который опирается на диаметр, а значит треугольник прямоугольный.
R - катет треугольника, 2R - гипотенуза треугольника. Найдем 2-ой катет по аксиоме Пифагора:
((2R)-R)=(4R-R)=(3R)=R3
P=R+2R+R3=3R+R3
Ответ: 3R+R3
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт