Дан треугольник с верхушками A(-2;0), B(2;4) и C(4;0). Составьте уравнения прямых,

Дан треугольник с верхушками A(-2;0), B(2;4) и C(4;0). Составьте уравнения прямых, содержащих медианы этого треугольника.

Задать свой вопрос
1 ответ
Координаты середины отрезка ищутся как полусуммы подходящих координат концов этого отрезка. Потому середина C_1 стороны AB имеет координаты (0;2),
середина B_1 стороны AC - (1;0), середина A_1 стороны  BC - (3;2).
Будем искать уравнения медиан в виде y=kx+b (уравнение прямой с угловым коэффициентом). Подставляя в это уравнение координаты точек A и A_1. найдем уравнение медианы AA_1. Аналогично поступаем с медианами BB_1 и CC_1.
В первом случае получаем систему уравнений относительно k и b
0= - 2k+b;  2=3k+bk=2/5; b=4/5 уравнение медианы AA_1 имеет вид
y=2x/5+4/5
Подобно получаем уравнения медианы BB_1: y=4x-4
и медианы CC_1: y= - x/2+2
(Если не правильно,не колотите..)
Амина Амулова
Спасибо огромное! Колотить не буду, так уж и быть)))
Леша Беседовский
хе
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт