З точки до площини проведено дв похил, як дорвнюють 12см

З точки до площини проведено дв похил, як дорвейвнюють 12см 17см. Рзниця проекцй цих похилих становить 9см. Знайдть проекц похилих

Задать свой вопрос
1 ответ
Точка вне плоскости А. Отрезки от неё АВ = 10 и АС =17. Перпендикуляр из точки А на плоскость обозначим как AD. Проекции отрезков, которые надобно отыскать BD и CD
По аксиоме Пифагора AB^2 = BD^2 + AD^2 и AС^2 = СD^2 + AD^2. От AD можно избавиться. И значения АВ и АС подставить. 100 = BD^2 + 289 - CD^2. Либо CD^2 - BD^2 =189. Слева разность квадратов. Причём знаменита разность проекций. Можем получить СD+BD = 21. Сумму знаем, разность знаем. Решая систему получим CD = 15, BD =6
********************
1) Точка вне плоскости А. Проекции от отрезков ВD = 12 и СD =40. Перпендикуляр из точки А на плоскость обозначим как AD. Сами отрезки, которые надобно найти АB и АC
По аксиоме Пифагора AB^2 = BD^2 + AD^2 и AС^2 = СD^2 + AD^2.
От AD можно избавиться. И значения ВD и СD подставить. AB^2 =144 + AС^2 - 1600. Всё решается точно так же, как в предшествующей задачке. AB^2 - AС^2 = 1456 -gt; AB + AС = 56 -gt; АВ =41; АС = 15
2) Точка вне плоскости А. Проекции от отрезков ВD = 1 и СD =7. Перпендикуляр из точки А на плоскость обозначим как AD. Сами отрезки, которые надобно отыскать АB и АC относятся. как 1 : 2
По аксиоме Пифагора AB^2 = BD^2 + AD^2 и AС^2 = СD^2 + AD^2.
От AD можно избавиться. И значения ВD и СD подставить. AB^2 =1 + AС^2 - 49
И ещё знаем, что 2АВ = АС, то есть 3 АВ^2 = 48 -gt; AB = 4, АС = 8
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт