в четырехугольнике ABCD точки M,N,P,Q соответственно середины сторон AB, BC, CD,

В четырехугольнике ABCD точки M,N,P,Q соответственно середины сторон AB, BC, CD, DA, докажите, что отрезки MP и NQ точкой скрещения делятся напополам

Задать свой вопрос
1 ответ
По аксиоме Вариньона MNPQ - параллелограмм.
Тогда MP и NQ - диагонали этого параллелограмма. По свойству диагоналей параллелограмма они делятся точкой пересечения напополам. Означает, отрезки MP и NQ точкой скрещения делятся напополам.

P.s.: Теорема Вариньона:
В любом четырёхугольнике отрезки, соединяющие середины смежных сторон, образуют параллелограмм.
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт