Очевидное определение имеет форму неравенства двух понятий:
nbsp;(*ответ*) ошибочно
nbsp;верно
Атрибутивные

Очевидное определение имеет форму неравенства 2-ух понятий:
nbsp;(*ответ*) неверно
nbsp;верно
Атрибутивные - обыкновенные суждения:
nbsp;(*ответ*) правильно
nbsp;неверно
В логическом квадрате многофункциональными являются все элементы:
nbsp;(*ответ*) правильно
nbsp;ошибочно
В суждениях вида SaP субъект распределен, а предикат не распределен:
nbsp;(*ответ*) подлинно
nbsp;ложно
В суждениях вида SiP субъект и предикат распределены:
nbsp;(*ответ*) ошибочно
nbsp;правильно
В суждениях вида SoP субъект не распределен, а предикат распределен:
nbsp;(*ответ*) да
nbsp;нет
Для подтверждения субконтрарности нельзя подобрать пример:
nbsp;(*ответ*) неправильно
nbsp;истинно
Дополнительные виды категорических суждений отражают реальную ситуацию мышления:
nbsp;(*ответ*) да
nbsp;нет
Единичные суждения не имеют кванторного слова:
nbsp;(*ответ*) подлинно
nbsp;ложно
Единичные суждения приравниваются к общим суждениям:
nbsp;(*ответ*) верно
nbsp;ошибочно
Каждое категорическое суждение устанавливает соотношение меж субъектом и предикатом:
nbsp;(*ответ*) да
nbsp;нет
Высококачественная характеристика задается связкой суждений:
nbsp;(*ответ*) да
nbsp;нет
Высококачественных черт существует:
nbsp;(*ответ*) две
nbsp;три
nbsp;одна
nbsp;5
Кванторное слово показывает на:
nbsp;(*ответ*) количество суждений
nbsp;качество суждений
nbsp;совместимость суждений
nbsp;несопоставимость суждений
Контрарность - отношение меж общими суждениями:
nbsp;(*ответ*) подлинно
nbsp;ложно
Контрарные суждения могут быть сразу истинными:
nbsp;(*ответ*) ошибочно
nbsp;правильно
Логический квадрат - универсальная графическая схема соотношений между категорическими суждениями:
nbsp;(*ответ*) правильно
nbsp;ошибочно
Логический квадрат построил Миша Пселл в:
nbsp;(*ответ*) XI веке
nbsp;XVI веке
nbsp;XII веке
nbsp;XVIII веке

Задать свой вопрос
1 ответ
Правильные ответы помечены по тексту
тест nbsp;прошел проверку
пользуемся)
, оставишь ответ?
Имя:*
E-Mail:


Последние вопросы

Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт