Две окружности с центрами O1 и O2 дотрагиваются внутренним образом в

Две окружности с центрами O1 и O2 дотрагиваются внутренним образом в точке A. Обоснуйте, что A, O1 и O2 лежат на одной прямой

Задать свой вопрос
1 ответ
Пусть О1 центр большей окружности, а О2 - меньшей. Окружности касаются в точке А внутренним образом, следовательно О1А - радиус большей окружности, а О2А - радиус наименьшей окружности. Допустим, что точки А, О1 и О2 не лежат на одной прямой. Проведем через общую точку А касательную к обеим окружностям. Тогда радиус О1А перпендикулярен этой касательной, в то же время радиус О2А также является перпендикуляром к этой касательной, но к касательной можно провести только один единственный перпендикуляр, как следует радиусы О1А и О2А лежат на одной прямой, являющейся перпендикуляром к касательной. Но, тогда точки А, О1 и О2 не могут не лежать на одной прямой. Прибываем к противоречию, означает эти точки лежат на одной прямой.
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт