Сколько существует 2015-значных чисел таких, что при вычёркивании его любой одной
Сколько существует 2015-значных чисел таких, что при вычёркивании его любой одной числа получается 2014-значное число, и это 2014-значное число является делителем начального числа (Напомним, что неоднозначное число не может начинаться с нуля и что на ноль ничего не делится, кроме, быть может, нуля)?
Задать свой вопрос1 ответ
Леонид
Пусть неоднозначное число одинаково 10A + c, c заключительная цифра. После вычёркивания последней числа получаем A, А делитель числа 10А + с, тогда c делится на А. Если А gt; 9, то с = 0; при 1 lt;= c lt;= 9 c требовательно меньше A, потому с не может делиться на А.
Из этого получаем, что все числа, у которых есть шанс оказаться хорошими, имеют вид ab0000...0, причем a, b не нули. Вычёркивание нулей удовлетворяет условию, проверяем вычёркивание a и b.
Вычеркивание a: ab0000...0 делится на a0000...0, означает, 10a + b делится на a, откуда b делится на a.
Вычёркивание b: ab0000...0 делится на b0000...0, означает, 10a + b делится на b, откуда 10a делится на b.
b делится на a: обозначим b = ka, k естественное, не большее 9.
10a делится на b, означает, 10a делится на ka, k делитель 10. Остаются варианты k = 1, 2 или 5.
k = 1: a = b, 9 вариантов (11... - 99...)
k = 2: b = 2a, 4 варианта (12..., 24..., 36..., 48)
k = 5: b = 5a, 1 вариант (15...)
Всего 9 + 4 + 1 = 14 чисел.
Из этого получаем, что все числа, у которых есть шанс оказаться хорошими, имеют вид ab0000...0, причем a, b не нули. Вычёркивание нулей удовлетворяет условию, проверяем вычёркивание a и b.
Вычеркивание a: ab0000...0 делится на a0000...0, означает, 10a + b делится на a, откуда b делится на a.
Вычёркивание b: ab0000...0 делится на b0000...0, означает, 10a + b делится на b, откуда 10a делится на b.
b делится на a: обозначим b = ka, k естественное, не большее 9.
10a делится на b, означает, 10a делится на ka, k делитель 10. Остаются варианты k = 1, 2 или 5.
k = 1: a = b, 9 вариантов (11... - 99...)
k = 2: b = 2a, 4 варианта (12..., 24..., 36..., 48)
k = 5: b = 5a, 1 вариант (15...)
Всего 9 + 4 + 1 = 14 чисел.
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
выпиши в свою тетрадь те правила этикета которые тебе не были
Разные вопросы.
Анна хорошо учится у неё много подруг свободное от учёбы время
Обществознание.
10) Килограмм конфет дороже килограмма печенья на 52 р. За 8
Математика.
Во сколько раз число атомов кислорода в земной коре больше числа
Химия.
Составить монолог от имени дневника двоечника 7-10 предложений
Русский язык.
Рассматривая литературный язык как сложное взаимодействие книжного языка и разговорного,В.И.Чернышёв горячо
Разные вопросы.
Арабы входят в __________________ групп народов. Местом расселения арабов с незапамятных
Разные вопросы.
Грузовой автомобиль марки краз за одну поездку может доставить 7.500 кирпичей
Математика.
Облако тегов