Решите производные: А)f(x)=12x^3-4x^2+6x-9 x0=2Б)f(x)=x^3+1/x^3 x0=-1

Решите производные:
А)f(x)=12x^3-4x^2+6x-9 x0=2
Б)f(x)=x^3+1/x^3 x0=-1

Задать свой вопрос
1 ответ
Производная степенной функции вычисляется по формуле:
(x^n)' = nx^n-1

А) Найти производную f(x)=12x^3-4x^2+6x-9 в точке x_0 =2

f'(x)=(12x^3-4x^2+6x-9)' = 36x^2 -8x +6 \\  \\ f'(2)=36*2^2 -8*2 +6 =144-16+6=134

Б) Найти производную f(x)=x^3+1/x^3 в точке x_0=-1

f'(x)=(x^3+1/x^3)' = (x^3+x^-3)' = 3x^2-3x^-4 = 3x^2 - \frac3x^4  \\  \\ f'(-1)= 3*(-1)^2 -  \frac3(-1)^4 =3 -3 =0
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт