z = 3*x^2-2*x*y+y^2-2*x-2*y+3
1. Найдем частные производные.
2. Решим систему уравнений.
6x-2y-2 = 0
-2x+2y-2 = 0
Получим:
а) Из первого уравнения выражаем x и подставляем во второе уравнение:
x = 1/3y+1/3
4/3y-8/3 = 0
Откуда y = 2
Данные значения y подставляем в выражение для x. Получаем: x = 1
Количество критичных точек равно 1.
M1(1;2)
3. Найдем приватные производные второго порядка.
4. Вычислим значение этих приватных производных второго порядка в критических точках M(x0;y0).
Вычисляем значения для точки M1(1;2)
AC - B2 = 8 gt; 0 и A gt; 0 , то в точке M1(1;2) имеется минимум z(1;2) = 0
Вывод: В точке M1(1;2) имеется минимум z(1;2) = 0;
-
Вопросы ответы
Статьи
Информатика
Статьи
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.
Математика.
Химия.
Русский язык.
Разные вопросы.