Сумма квадратов цифр не которого положительного трехзначного числа одинакова 74. В
Сумма квадратов цифр не которого положительного трехзначного числа одинакова 74. В этом числе цифра сотен одинакова двойной сумме цифр 10-ов и единиц. Найдите это число, если знаменито, что разность меж ним и числом, записанным теми же цифрами, но в оборотном порядке, одинакова 495.
Задать свой вопрос1 ответ
Камилла Полупинская
100z+10y+x -разыскиваемое число
По условиям задачки
z^2+y^2+x^2=74
z=2(y+x)
100z+10y+x-100x-10y-z=495 99z-99x=495
получили систему уравнений, подставим в первое и во второе z=2(x+y)
(2(x+y))^2+y^2+x^2=74
99*2(x+y)-99x=495 198x+198y-99x=495 99x+198y=495 99x=495-198y
x=5-2y
подставим в 1-ое уравнение
(2(5-2y+y)^2+y^2+(5-2y)^2=74
(10-2y)^2+y^2+(5-2y)^2=74
10040y+4y^2+y^2+2520y+4y^2=74
9y^260y+125=74
9y^2-60y+51=0
3y^2-20y+17=0
D=(-10)^2-3*17=100-51=49
y=(10+7)/3=17/3 исключаем
y=(10-7)/3=3/3=1
y=1 x=5-2=3 z=2(1+3)=2*4=8
число 813
По условиям задачки
z^2+y^2+x^2=74
z=2(y+x)
100z+10y+x-100x-10y-z=495 99z-99x=495
получили систему уравнений, подставим в первое и во второе z=2(x+y)
(2(x+y))^2+y^2+x^2=74
99*2(x+y)-99x=495 198x+198y-99x=495 99x+198y=495 99x=495-198y
x=5-2y
подставим в 1-ое уравнение
(2(5-2y+y)^2+y^2+(5-2y)^2=74
(10-2y)^2+y^2+(5-2y)^2=74
10040y+4y^2+y^2+2520y+4y^2=74
9y^260y+125=74
9y^2-60y+51=0
3y^2-20y+17=0
D=(-10)^2-3*17=100-51=49
y=(10+7)/3=17/3 исключаем
y=(10-7)/3=3/3=1
y=1 x=5-2=3 z=2(1+3)=2*4=8
число 813
Виктория
813
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
Игорь 14 лет назад был на 8 лет моложе, чем его
Математика.
Два тела массами m1 и m2 находящие на расстоянии R друг
Физика.
В сосуде 4целых одна пятая литр воды что бы заполнить сосуд
Математика.
Двум малярам Диме И Олегу поручили выкрасить фасад дома они разделили
Разные вопросы.
найти порядковый номер 41Э если в ядре 20 нейтронов
Разные вопросы.
в ряду натуральных чисел 3, 8, 10, 24, … 18 одно
Математика.
Предприятие по производству с/хоз продукции на производство затратило 3527000 руб Валовый
Разные вопросы.
Математика, задано на каникулы. ВАРИАНТ 1004
НОМЕР 1,2,3,4,5,6,7,8.
Математика.
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
Облако тегов