Треугольник АВС задан координатами собственных вершин: А (3; 4), В (9;

Треугольник АВС задан координатами собственных вершин: А (3; 4), В (9; 2),
С (5; 7). Написать уравнение: стороны АВ; вышины СН; прямой СС1, параллельной прямой АВ.

Помогите

Задать свой вопрос
1 ответ
Составим каноническое уравнение прямой АВ.
Воспользуемся формулой канонического уравнения прямой:
(x - xa)/(xb - xa) = (y - ya)/(yb - ya).
Подставим в формулу координаты точек:
(x - 3)/((-9) - 3) = (y - 4)/((-2) - 4)
В итоге получено каноническое уравнение прямой:
(x - 3)/(-12) = (y - 4)/(-6).
Из уравнения прямой в каноническом виде получим уравнение прямой с угловым коэффициентом: y = 0,5x + 2,5.

Вышина СН перпендикулярна АВ.
Её коэффициент к = -1/(к(АВ)) = -1/0,5 = -2.  
Уравнение СН: у = -2х + в.
Подставим координаты точки С: -7 = -2*(-5) + в.
Отсюда в = -7 - 10 = -17.
СН: у = -2х - 17.

СС1: у = 0,5х + в (к = 0,5 как и у АВ).
Подставим координаты точки С: -7 = 0,5*(-5) + в.
в = -7 + 2,5 = -4,5.
СС1: у = 0,5х - 4,5.
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт