Решить уравнение:а) xy039; - 2y = x^3 + xб) y039;039; -
Решить уравнение:
а) xy' - 2y = x^3 + x
б) y'' - 12y + 36y = 14e^(6x)
2 ответа
Кира Карнута
А) x*y' - 2y = x^3 + x
Уравнение неоднородное 1 порядка.
Подмена y = u*v, y' = u'*v + u*v'
x*u'*v + x*u*v' - 2u*v = x^3 + x
x*u'*v + u*(x*v' - 2v) = x^3 + x
Скобку приравниваем к 0
x*v' - 2v = 0
x*dv/dx = 2v
dv/v = 2dx/x
ln v = 2ln x = ln(x^2)
v = x^2
Подставляем в уравнение
x*u'*x^2 + u*0 = x^3 + x
u'*x^3 = x^3 + x
u' = 1 + 1/x^2
Решаем интегрированием
u = x - 1/x + C
Оборотная подмена
y = u*v = (x - 1/x + C)*x^2 = x^3 + Cx^2 - x
б) y'' - 12y' + 36y = 14e^(6x)
Неоднородное уравнение 2 порядка
y = y0 + y* (решение однородного + приватное решение неоднородного)
Однородное
y'' - 12y' + 36y = 0
Характеристическое уравнение
k^2 - 12k + 36 = 0
(k - 6)^2 = 0
k1 = k2 = 6
y0 = (C1 + C2*x)*e^(6x)
Обретаем частное решение неоднородного уравнения
Ступень е одинакова 6x, 6 - кратный корень характеристического уравнения
y* = Ax^2*e^(6x) (A - это неведомый коэффициент)
y*' = A(2x*e^(6x) + x^2*6e^(6x)) = A(2x + 6x^2)*e^(6x)
y*'' = A[(2 + 12x)*e^(6x) + (2x + 6x^2)*6e^(6x)] =
= A(2 + 12x + 12x + 36x^2)*e^(6x)
Подставляем в уравнение
A(2+24x+36x^2)*e^(6x) - 12A(2x+6x^2)*e^(6x) + 36Ax^2*e^(6x) = 14e^(6x)
Уменьшаем e^(6x)
A(2 + 24x + 36x^2) - 12A(2x + 6x^2) + 36Ax^2 = 14
Раскрываем скобки
2A + 24Ax + 36Ax^2 - 24Ax - 72Ax^2 + 36Ax^2 = 14
2A = 14
A = 7
y* = 7x^2*e^(6x)
Конечный ответ
y = y0 + y* = (C1 + C2*x)*e^(6x) + 7x^2*e^(6x)
Уравнение неоднородное 1 порядка.
Подмена y = u*v, y' = u'*v + u*v'
x*u'*v + x*u*v' - 2u*v = x^3 + x
x*u'*v + u*(x*v' - 2v) = x^3 + x
Скобку приравниваем к 0
x*v' - 2v = 0
x*dv/dx = 2v
dv/v = 2dx/x
ln v = 2ln x = ln(x^2)
v = x^2
Подставляем в уравнение
x*u'*x^2 + u*0 = x^3 + x
u'*x^3 = x^3 + x
u' = 1 + 1/x^2
Решаем интегрированием
u = x - 1/x + C
Оборотная подмена
y = u*v = (x - 1/x + C)*x^2 = x^3 + Cx^2 - x
б) y'' - 12y' + 36y = 14e^(6x)
Неоднородное уравнение 2 порядка
y = y0 + y* (решение однородного + приватное решение неоднородного)
Однородное
y'' - 12y' + 36y = 0
Характеристическое уравнение
k^2 - 12k + 36 = 0
(k - 6)^2 = 0
k1 = k2 = 6
y0 = (C1 + C2*x)*e^(6x)
Обретаем частное решение неоднородного уравнения
Ступень е одинакова 6x, 6 - кратный корень характеристического уравнения
y* = Ax^2*e^(6x) (A - это неведомый коэффициент)
y*' = A(2x*e^(6x) + x^2*6e^(6x)) = A(2x + 6x^2)*e^(6x)
y*'' = A[(2 + 12x)*e^(6x) + (2x + 6x^2)*6e^(6x)] =
= A(2 + 12x + 12x + 36x^2)*e^(6x)
Подставляем в уравнение
A(2+24x+36x^2)*e^(6x) - 12A(2x+6x^2)*e^(6x) + 36Ax^2*e^(6x) = 14e^(6x)
Уменьшаем e^(6x)
A(2 + 24x + 36x^2) - 12A(2x + 6x^2) + 36Ax^2 = 14
Раскрываем скобки
2A + 24Ax + 36Ax^2 - 24Ax - 72Ax^2 + 36Ax^2 = 14
2A = 14
A = 7
y* = 7x^2*e^(6x)
Конечный ответ
y = y0 + y* = (C1 + C2*x)*e^(6x) + 7x^2*e^(6x)
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
В сосуде 4целых одна пятая литр воды что бы заполнить сосуд
Математика.
Двум малярам Диме И Олегу поручили выкрасить фасад дома они разделили
Разные вопросы.
найти порядковый номер 41Э если в ядре 20 нейтронов
Разные вопросы.
в ряду натуральных чисел 3, 8, 10, 24, … 18 одно
Математика.
Предприятие по производству с/хоз продукции на производство затратило 3527000 руб Валовый
Разные вопросы.
Математика, задано на каникулы. ВАРИАНТ 1004
НОМЕР 1,2,3,4,5,6,7,8.
Математика.
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
выпиши в свою тетрадь те правила этикета которые тебе не были
Разные вопросы.
Анна хорошо учится у неё много подруг свободное от учёбы время
Обществознание.
Облако тегов