в конус вписан цилиндр Так что нижнее основание лежит на основании

В конус вписан цилиндр Так что нижнее основание лежит на основании конуса, а окружность верхнего основания принадлежит боковой поверхности конуса. Объем конуса равен 72.
Отыскать:
1) объем цилиндра, верхнее основание которого разделяет вышину конуса напополам.
2) величайший объем описанного цилиндра

Задать свой вопрос
1 ответ
Вот набросок.
Дано: Объем конуса V(кон) = 72; Высота цилиндра O1O2 = O2S = h = H/2
1) Отыскать объем цилиндра V(цил)
Объем конуса V(кон) = 1/3*pi*R^2*H = 72
Отсюда pi*R^2*H = 72*3 = 216
Так как конус с основанием CO2D подобен конусу с основанием AO1B
с коэффициентом подобия H/h = 2, то r = R/2. Объем цилиндра
V(цил) = pi*r^2*h = pi*(R/2)^2*(H/2) = 1/8*pi*R^2*H = 1/8*216 = 27
2) Отыскать объем наибольшего такового цилиндра.
На 2 рисунке обозначены синим цветом два цилиндра в последних положениях.
В обоих случаях объем цилиндра недалёк к 0.
Черным обозначено какое-то среднее положение, при котором объем цилиндра максимален.
У конуса угол наклона образующей tg  = H/R.
У верхнего конуса тоже tg  = (H - h)/r = H/R.
Означает, у цилиндра H - h = r*H/R; отсюда h = H - H*r/R = H*(R - r)/R
Объем цилиндра
V(цил) = pi*r^2*h = pi*H/R*r^2*(R - r) = pi*H*r^2 - pi*H/R*r^3 -gt; max
Объем будет максимален, когда его производная будет одинакова 0
V'(цил) = 2pi*H*r - 3pi*H/R*r^2 = pi*H*r*(2 - 3*r/R) = 0
Отсюда 2 - 3*r/R = 0; r = 2/3*R; h = H*(R - 2/3*R)/R = H*1/3 = H/3
V = pi*r^2*h = pi*4/9*R^2*H/3 = 4/27*pi*R^2*H = 4/27*216 = 4*8 = 32
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт