обоснуйте на простом образце существование ИРРАЦИОНАЛЬНЫХ чисел

Обоснуйте на ординарном образце существование ИРРАЦИОНАЛЬНЫХ чисел

Задать свой вопрос
2 ответа

иррациональные цисла - действительные не являющиеся разумными...

обосновать существование - довольно привести пример.

Пример иррационального числа \sqrt2 \\

понятно, что оно действительное (величина длины диагонали квадрата со стороной 1, к примеру), покажем, что оно не является разумным, то есть не существует дроби х/у=2, где х - целое, у - естественное

Предположим оборотное, то есть такие х и у есть, тогда

\sqrt2 =\fracxy ; *\sqrt2 \\\sqrt2*\sqrt2=\fracx^2y^2 ;\\2*y^2=x^2;

(самое сложное)

разложив на множители х и у получим:

слева в равенстве число 2 в нечетной ступени (вправду один раз теснее есть, и могут быть от у*у, но только в четных ступенях, а один плюс четное - нечетно)

справа 2 если и есть то только в четной ступени.

а 2 в нечетной ступени не может быть одинаково 2 в четной

получили противоречие

Значит представления 2 в виде дроби не существует.

Таким образом число 2 - иррационально


P.S. применено (два натуральных числа одинаковы совпадают все ступени обычных сомножителей)

Полина Идиатулова
еще один пример : хоть какое рациональное число можно представить в виде бесконечной периодической дроби : 2=2,(0) , 1/3=0,(3) и тд, но у числа 0,1011011101111011111......периода нет , означает оно иррационально
Подверткин Егор
спасибо огромное,все очень даже просто и понятно,но можете сказать по какому свойству вы вынесли y^2 из под знака дроби и она не сменила знак при переносе в иную часть уравнения?
Диман Гурно
и вы скажите про двойки в степенях я правильно сообразил?
Вера Купришова
просто помножил на у^2... каждое число представимо в виде произведения простых чисел (каждое обычное в собственной степени) , например 84=2^2 * 3^1 * 5^0 * 7^1 то есть число 84 можно представить как набор 2;1;0;1 вот о первых числах этих комплектов и идет речь (слева нечетное число, справа четное)
Число пи 3,141592....
Амелия Будаш
а вы сможете это обосновать ?
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт