В клетки таблицы 3х3 вписаны 9 разных естественных чисел, сумма которых
В клеточки таблицы 3х3 вписаны 9 различных естественных чисел, сумма которых ровна 50. Катя отыскала сумму чисел в каждом из квадратов 2х2. Какова меньшая возможная сумма этих четырёх сумм?
Задать свой вопрос1 ответ
Анатолий Софрин
Обозначим среднее число, как С (Centre), левое от него L (Left), правое от центра R (Right), ввысь от центра U (Up) и вниз от центра D (Down). Оставшиеся по углам числа обозначим, как x, y, z и t.
x U y
L C R
z D t
Сумма в верхнем левом квадрате 2х2: x + U + L + C ;
Сумма в верхнем правом квадрате 2х2: U + y + C + R ;
Сумма в нижнем левом квадрате 2х2: L + C + z + D ;
Сумма в нижнем правом квадрате 2х2: C + R + D + t ;
Сумма этих четырёх сумм будет:
S = ( x + U + L + C ) + ( U + y + C + R ) + ( L + C + z + D ) + ( C + R + D + t ) =
= x + 2U + 2L + 4C + y + 2R + z + 2D + t =
= x + y + z + t + 2 ( U + L + R + D ) + 4C ;
Нам необходимо добиться минимальности S, тогда в естественные числа нужно брать малые естественные числа, а означает и число 1. Величина числа C оказывает влияние на общую сумму сильней всего, так как число С берётся 4 раза, с коэффициентом 4, т.е. как 4С, потому в первую очередь минимизировать нужно конкретно число С. Итак, С = 1 , а 4С=4 .
Оставшиеся величины U, L, R и D влияют на общую сумму с удвоенной силой, так как величина ( U + L + R + D ) берётся 2 раза, с коэффициентом 2, т.е. как 2( U + L + R + D ), потому в эти величины нужно брать 4 малые естественные числа хорошие от единицы, т.е. числа 2, 3, 4 и 5, всё равно в каком конкретно порядке, т.е. просто:
( U + L + R + D ) = ( 2 + 3 + 4 + 5 ) = 14 ;
2 ( U + L + R + D ) = 28 ;
Мы знаем, что полная сумма должна быть равна 50, т.е.:
x + U + y + L + C + R + z + D + t = 50 .
( x + y + z + t ) + ( U + L + R + D ) + C = 50 .
Подставим сюда величины,
которым мы теснее присвоили определённые значения:
( x + y + z + t ) + 14 + 1 = 50 .
x + y + z + t = 35 .
Мы никак не ограниченны в выборе различных чисел x, y, z и t , так что полностью можем подобрать какие-то натуральные числа, чтоб это выполнялось, например ( x + y + z + t ) = ( 7 + 8 + 9 + 11 ) .
Все условия выполнены, числа взяты малые, в сумме квадратика 3х3 они дают 50, сейчас посчитаем сумму всех сумм 2х2:
S = x + y + z + t + 2 ( U + L + R + D ) + 4C = 35 + 28 + 4 = 35 + 32 = 67 ;
О т в е т : 67 .
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
Игорь 14 лет назад был на 8 лет моложе, чем его
Математика.
Два тела массами m1 и m2 находящие на расстоянии R друг
Физика.
В сосуде 4целых одна пятая литр воды что бы заполнить сосуд
Математика.
Двум малярам Диме И Олегу поручили выкрасить фасад дома они разделили
Разные вопросы.
найти порядковый номер 41Э если в ядре 20 нейтронов
Разные вопросы.
в ряду натуральных чисел 3, 8, 10, 24, … 18 одно
Математика.
Предприятие по производству с/хоз продукции на производство затратило 3527000 руб Валовый
Разные вопросы.
Математика, задано на каникулы. ВАРИАНТ 1004
НОМЕР 1,2,3,4,5,6,7,8.
Математика.
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
Облако тегов