Как поменяются объем и площадь поверхности куба, если длину его ребра

Как поменяются объем и площадь поверхности куба, если длину его ребра уменьшить на 10%?

Задать свой вопрос
1 ответ

Ответ:


Пошаговое объяснение:

пусть любая сторона = а

тогда после трансформации = 0,9*а

V1=a^3

V2=(0.9*a)^3=0.729*a^3

V1/V2=a^3/0.729*a^3=1.37 раза

Объем уменьшится в 1,37 раз

Площадь поверхности

S1=6*a^2

S2=6*(0.9*a)^2=6*0.81*a^2

S1/S2=a^2/6*0.81*a^2=1.24 раза

площадь уменьшится в 1,24 раза.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт