математика интеграл

Математика интеграл

Задать свой вопрос
1 ответ

Ответ:

Пошаговое изъясненье:

Подмена: x=e^t  (t=ln(x) )

dx=e^t*dt

int(x^(1/2) *ln(x)*dx)=int( e^(t/2) * t * e^t *dt)=int(e^(3t/2)* t *dt)

Интегрируем по частям:

2/3* int(t *d(e^3t/2))=2/3 *( t *e^(3t/2) -int(e^(3t/2)*dt) )=                                             2/3 *(t*e^(3t/2) -2/3*e^(3t/2) )+c=2/3*(ln(x)* x^(3/2) -2/3*x^(3/2) )+c=

=2/3 *ln(x)*x^(3/2) -4/9*x^(3/2) +c= 2/3*x^(3/2) *( ln(x)-2/3 )+c=                                     2/9 *x^(3/2) *(3ln(x)-2)+c

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт