В деревне живут 94 человек в возрасте 1 , 2 ,

В деревне живут 94 человек в возрасте 1 , 2 , . . . , 94 лет (для каждого возраста - ровно один человек). Два человека могут образовать счастливую пару, если возраст каждого из них хотя бы на 9 лет больше половины возраста иного. Какое величайшее количество (непересекающихся) счастливых пар можно составить из жителей селения?

Задать свой вопрос
Agata Ljamutova
пожалуйста
1 ответ

Ответ:

36 пар

Пошаговое объяснение:

Покажем, что люди в возрасте от 1 до 18 лет в счастливую пару входить не могут. Обозначим через x возраст самого молодого человека, входящего в счастливую пару и через y возраст его партнера. Тогда имеет место неравенство x y/2 + 9 либо (x-y/2) 9. Заметим, что (x-y/2) lt; x/2, так как y gt; x. Имеет место неравенство 2(x-y/2) 18, но так как 2(x-y/2) lt; x, то x gt; 18, то есть, возраст самого юного человека, входящего в счастливую пару, строго больше 18 лет.

Покажем, что все пары (19, 20), (21, 22), (23, 24), ..., (93, 94) будут счастливыми. Легко проверить, что если x gt;= 10, то для чисел 2x-1 и 2x имеют место неравенства 2x-1 gt;= x + 9 и 2x gt;= (2x-1)/2 + 9. Всего счастливых пар будет 94/2 - 18/2 = 47 - 9 = 36.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт