(x^2-3x)^2-8(x^2-3x)-20=0 помогите пожалуйста
(x^2-3x)^2-8(x^2-3x)-20=0 помогите пожалуйста
Задать свой вопросОтвет:
x = 5; - 2; 1; 2
Пошаговое объяснение:
Пусть (x - 3x) = t t - 8t - 20 = 0 по аксиоме Виета:
t + t = 8; t t = - 20 t = 10, t = - 2
1) x - 3x = 10; x - 3x - 10 = 0 x + x = 3; xx = - 10; x = 5; x = - 2
2) x - 3x = - 2; x - 3x + 2 = 0 по аксиоме Виета: x + x = 3; xx = 2;
x = 1; x = 2
Ответ: -2;1;2;5
Пошаговое разъясненье: уравнение квадр. относительно (х^2-3х)=t? решаем t^2-8t-20=0 по теореме Виета его корешки 10 и-2
далее возвращаемся к подмене и решаем два уравнения
x^2-3x=10 и x^2-3x=-2
x^2-3x-10=0 и x^2-3x+2=0
вновь по аксиоме Виета обретаем корешки 5; -2; и 1;2
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.