Изучить на сходимость. С доскональным решением.

Изучить на сходимость. С подробным решением.

Задать свой вопрос
1 ответ

Ответ:

Ряд сходится

Пошаговое изъясненье:

Применяем признак Даламбера

\lim_k \to \infty \frac5(k+1)+6*k!(k+1)!*(5k+6) = \lim_k \to \infty \frac(5k+11)*k!k!(k+1)*(5k+6)  = \lim_k \to \infty\frac(5k+11)(k+1)(5k+6) = \lim_k \to \infty \frac5k+115k^2+11k+6   = \lim_k \to \infty \frack^2(\frac5k+\frac11k^2   ) k^2 (5+\frac11k+\frac6k^2   )  =0 lt; 1

Ряд Сходится

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт