Найдите x+y+z, если (x^2+1)(y^2+5)+2x(2y+2+yz)+z^2=1

Найдите x+y+z, если (x^2+1)(y^2+5)+2x(2y+2+yz)+z^2=1

Задать свой вопрос
1 ответ
Найдем х:
Перенесём правую часть уравнения в левую часть уравнения со знаком минус.
Уравнение перевоплотится из
2x(yz+2y+2)+z2+(x2+1)(y2+5)=1
в
2x(yz+2y+2)+z2+(x2+1)(y2+5)1=0
Раскроем выражение в уравнении
2x(yz+2y+2)+z2+(x2+1)(y2+5)1=0
Получаем квадратное уравнение
x2y2+5x2+2xyz+4xy+4x+y2+z2+4=0
Это уравнение вида
a*x^2 + b*x + c = 0
Квадратное уравнение можно решить с подмогою дискриминанта.
D = b^2 - 4*a*c
a=y2+5a
b=2yz+4y+4
c=y2+z2+4
, то
D =(4 + 4*y + 2*y*z)^2 - 4 * (5 + y^2) * (4 + y^2 + z^2) = (4 + 4*y + 2*y*z)^2 - (20 + 4*y^2)*(4 + y^2 + z^2)
Уравнение имеет два корня.
x1 = (-b + (D)) / (2*a)
x2 = (-b - (D)) / (2*a)
либо
x1 = (-y*z - 2*y + (-y^4 + 4*y^2*z - 5*y^2 + 4*y*z + 8*y - 5*z^2 - 16) - 2)/(y^2 + 5)
x2 = -(y*z + 2*y + (-y^4 + 4*y^2*z - 5*y^2 + 4*y*z + 8*y - 5*z^2 - 16) + 2)/(y^2 + 5)
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт