Нам нужно решить неполное квадратное уравнение -1/5 * x^2 = 0. Давайте составим метод деяний для решения заданного уравнения.
Метод деяний для решения уравнения -1/5 * x^2 = 0
- вспомним какое уравнение именуется полным квадратным;
- вспомним какие уравнения именуется неполным квадратным;
- приступим к решению данного уравнения, первым деянием избавимся от коэффициента перед переменной;
- извлечем квадратный корень из обеих долей уравнения;
- создадим проверку найденного решения.
Полные и неполные квадратные уравнения
Давайте вспомним как выглядит полное квадратное уравнение.
ax^2 + bx + c = 0, где a, b, c некие числа, a x переменная. a не одинакова нулю по другому уравнение не будет квадратным.
Если коэффициент c = 0, то уравнение имеет вид ax^2 + bx = 0 неполное квадратное уравнение.
Если коэффициент b = 0, то уравнение имеет вид ax^2 + c = 0 неполное квадратное уравнение.
Так же вероятен вариант, когда b = 0 и c = 0, то уравнение имеет вид ax^2 = 0 неполное квадратное уравнение.
Наше уравнение как раз и относится к последнему случаю.
Решаем неполное квадратное уравнение -1/5x^2 = 0
Первым шагом в решении уравнения избавимся от коэффициента перед переменной.
Для этого умножим на - 5 обе доли уравнения и получим:
-1/5x^2 * (-5) = 0 * (-5);
x^2 = 0;
Извлечем из обеих частей уравнения квадратный корень, получим:
x = 0.
Корень найден, давайте проверим верно ли мы его отыскали.
Подставляем x = 0 в начальное уравнение:
-1/5 * x^2 = 0;
-1/5 * 0^2 = 0;
-1/5 * 0 = 0;
0 = 0.
Корень найден правильно.
Ответ: x = 0.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.