Андрей на 2 года старше Бориса, а Борис на 1 год
Андрей на 2 года старше Бориса, а Борис на 1 год ветше Василия. Сколько лет каждому, если совместно им 40 лет?
Задать свой вопросВведите переменную
Примем возраст Василия за х.
Тогда возраст Бориса, который ветше Василия на 1 год, равен х+1.
А возраст Андрея, который ветше Бориса на 2 года, равен х+1+2, то есть х+3.
Составьте уравнение на базе данных
Так как мы знаем, что вместе Василию, Борису и Андрею 40 лет, то можно составить следующее уравнение:
х+х+1+х+3=40. Можно в данном уравнении расставить скобки для визуального выделения возраста каждого из мальчиков, то есть уравнение примет вид х+(х+1)+(х+3)=40.
Преобразуйте уравнение
Исполняем стандартную функцию преобразования уравнения, для того чтоб в левой части уравнения содержалась только переменная, в правой части (после знака "=") - числовые значения. Для этого:
- Складываем все переменные х в левой доли уравнения. Получаем 3х+1+3=3х+4=40.
- Переносим все значения, не считая переменных, в правую часть уравнения. По правилам переноса значения переносятся с обратным знаком, то есть со знаком "-". Получаем 3х=40-4=36.
- Определяем значение переменной х средством дробления обеих долей уравнения на коэффициент при х, то есть на 3. Отсюда х=36/3=12.
Ответ
За х был принят возраст Василия. Таким образом, Василию 12 лет.
Борис ветше Василия на 1 год, то есть ему 12+1=13 лет.
Андрей на 2 года старше Бориса, то есть ему 12+1+2=15 лет.
Проверка
Сложим возрасты всех мальчишек для проверки решения.
12+13+15=40, что соответствует условиям задачки.
-
Вопросы ответы
Статьи
Информатика
Статьи
Физика.
Геометрия.
Разные вопросы.
Обществознание.
Математика.
Химия.
Русский язык.
Разные вопросы.
Разные вопросы.
Математика.