Сколько шестизначных чисел, делящихся на 30, сумма цифр которых не более

Сколько шестизначных чисел, делящихся на 30, сумма цифр которых не более 5?

Задать свой вопрос
1 ответ
Так как разыскиваемые шестизначные числа обязаны делиться на 30, заключительная цифра этих чисел должна быть 0, а сумма цифр обязана делиться на три. Также в условии сказано, что сумма цифр не более 5, что с учетом предшествующего условия дает нам четкое значение суммы цифр: 3. Следовательно в записи разыскиваемых чисел могут находиться только числа 1, 2, 3. Эти числа:

300 000, 210 000, 201 000, 200 100, 200 010, 120 000, 102 000,

100 200, 100 020, 111 000, 110 100, 110 010, 101 100, 101 010,

100 110.

Ответ: 15 цифр.
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт