Найдите промежутки возрастания убывания и экстремумы функции f(x)=x^3-3x-1

Найдите промежутки возрастания убывания и экстремумы функции f(x)=x^3-3x-1

Задать свой вопрос
1 ответ
Найдем производную функции и приравняем ее к нулю:

(f(x)) = ( x^3 - 3x - 1) = 3 * x^2 - 3.

3 * x^2 - 3 = 0

x^2 = 1

x1= 1 x2 = -2.

Так как на интервале от минус бесконечности до -2 и от 1 до бесконечности производная положительная, то функция подрастает, на промежутке ] -2; 1 [ отрицательная - функция убывает.
, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт