Отыскать производную функции: f(x)=sin^3(2-3x)

Отыскать производную функции: f(x)=sin^3(2-3x)

Задать свой вопрос
1 ответ

Найдём производную нашей данной функции: f(х) = sin^3 (2 - 3х).

Воспользовавшись главными формулами и правилами дифференцирования:

(х^n) = n * х^(n-1).

(sin (х)) = cos (х).

(с) = 0, где с const.

(с * u) = с * u, где с const.

y = f(g(х)), y = fu(u) * gх(х), где u = g(х).

Таким образом, производная нашей данной функции будет последующая:

f(х) = (sin^3 (2 - 3х)) = (2 - 3х) * (sin (2 - 3х)) * (sin^3 (2 - 3х)) = ((2) (3х)) * (sin (2 - 3х)) * (sin^3 (2 - 3х)) = (0 3) * (cos (2 - 3х)) * 3 * (sin^2 (2 - 3х)) = (-3) * (cos (2 - 3х)) * 3 * (sin^2 (2 - 3х)) = (-9) * (cos (2 - 3х)) * (sin^2 (2 - 3х).

Ответ: Производная нашей данной функции будет одинакова f(х) = (-9) * (cos (2 - 3х)) * (sin^2 (2 - 3х).

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт