какой номер имеет член арифметической прогрессии, одинаковый 180, если ее первый
какой номер имеет член арифметической прогрессии, одинаковый 180, если ее 1-ый член равен -20, а разность одинакова 2,5? 6
Задать свой вопросЗадана арифметическая прогрессия, в которой 1-ый член a1 = -20, а разность d = 2,5.
Требуется найти номер члена этой прогрессии, одинакового 180 (an = 180).
Вспомним формулу для нахождения n-ого члена арифметической прогрессии:
an = a1 + (n - 1) * d,
где n порядковый номер члена прогрессии.
Из этой формулы выразим n:
(n - 1) * d = an - a1;
n - 1 = (an - a1) / d;
n = ((an - a1) / d) + 1.
Вычислим номер члена прогрессии an = 180:
n = ((180 - (-20)) / 2,5) + 1;
n = ((180 + 20) / 2,5) + 1;
n = 200 / 2,5 + 1;
n = 81.
Ответ: n = 81.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.