Для функции f(x)=cosx + sinx + 1/sinx найдите первообразную, график которой
Для функции f(x)=cosx + sinx + 1/sinx найдите первообразную, график которой проходит через точку ( /4;4)
Задать свой вопросНам нужно отыскать нашей данной функции: f(х) = sin (3х) * соs (3х).
Используя главные формулы дифференцирования и управляла дифференцирования:
(х^n) = n * х^(n-1).
(sin (х)) = соs (х).
(соs (х) = -sin (х).
(uv) = uv + uv.
y = f(g(х)), y = fu(u) * gх(х), где u = g(х).
Таким образом, производная нашей данной функции будет смотреться следующим образом:
f(х) = (sin (3х) * соs (3х)) = (sin (3х)) * соs (3х) + sin (3х) * (соs (3х)) = (3х) * (sin (3х)) * соs (3х) + sin (3х) * (3х) * (соs (3х)) = 3 * 1 * х^0 * соs (3х) * соs (3х) + sin (3х) * 3 * 1 * х^0 * (-sin (3х)) = 3 * 1 * соs^2 (3х) sin^2 (3х) * 3 * 1 = 3соs^2 (3х) 3sin^2 (3х).
Ответ: Производная нашей данной функции будет равна f(х) = 3соs^2 (3х) 3sin^2 (3х).
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.