Отыскать решение производной функции y=sin^2x/ cosx

Найти решение производной функции y=sin^2x/ cosx

Задать свой вопрос
1 ответ

Найдем решение производной функции y = sin^2 x/cos x. 

Для того, чтобы найти производную функции, используем формулы производной: 

  • (x - y) = x - y ; 
  • sin x = cos x; 
  • (x/y) = (x * y - y * x)/y^2; 
  • (x^n) = n * x^(n - 1); 
  • x = 1; 
  • C = 0;
  • cos x= -sin x. 

Тогда получаем:  

y = (sin^2 x/cos x) = ((sin^2 x) * cos x - cos x * sin^2 x)/cos^2 x = (2 * sin x * sin x * cos x - (-sin x) * sin^2 x)/cos^2 x = (2 * sin x * cos x * cos x + 2 * sin^3 x)/cos^2 x = (2 * sin x * cos^2 x + 2 * sin^3 x)/cos^2 x. 

, оставишь ответ?
Имя:*
E-Mail:


Последние вопросы

Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт