Отыскать производную функции y=sin^2 3x

Найти производную функции y=sin^2 3x

Задать свой вопрос
1 ответ

Найдём производную нашей данной функции: f(х) = sin^2 (3х).

Воспользовавшись основными формулами и правилами дифференцирования:

(х^n) = n * х^(n-1).

(sin (х)) = соs (х).

(с) = 0, где с соnst.

(с * u) = с * u, где с соnst.

y = f(g(х)), y = fu(u) * gх(х), где u = g(х).

Таким образом, производная нашей данной функции будет последующая:

f(х) = (sin^2 (3х)) = (3х) * (sin (3х)) * (sin^2 (3х)) = (3) * (соs (3х)) * 2 * (sin^1 (3х)) = 6 * (соs (3х)) * (sin (3х)).

Ответ: Производная нашей данной функции будет одинакова f(х) = 6 * (соs (3х)) * (sin (3х)).

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт