Сумма всех четных чисел до 200 включительно
Сумма всех четных чисел до 200 включительно
Задать свой вопрос1 ответ
Гость
Сумма всех четных чисел от 2 до 200 включительно представляет собой сумму первых 100 членов арифметический прогрессии an с первым членом а1, равным 2 и разностью d, также одинаковой 2.
Найдем сумму этих чисел, используя формулу суммы членов арифметической прогрессии с первого по n-й включительно Sn = (2 * a1 + d * (n - 1)) * n / 2.
Подставляя в эту формулу значения a1 = 2, d = 2, n = 100, получаем:
S100 = (2 * 2 + 2 * (100 - 1)) * 100 / 2 = (2 * 2 + 2 * 99) * 50 = 2 * 101 * 50 = 202 * 50 = 10100.
Ответ: разыскиваемая сумма равна 10100.
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
Игорь 14 лет назад был на 8 лет моложе, чем его
Математика.
Два тела массами m1 и m2 находящие на расстоянии R друг
Физика.
В сосуде 4целых одна пятая литр воды что бы заполнить сосуд
Математика.
Двум малярам Диме И Олегу поручили выкрасить фасад дома они разделили
Разные вопросы.
найти порядковый номер 41Э если в ядре 20 нейтронов
Разные вопросы.
в ряду натуральных чисел 3, 8, 10, 24, … 18 одно
Математика.
Предприятие по производству с/хоз продукции на производство затратило 3527000 руб Валовый
Разные вопросы.
Математика, задано на каникулы. ВАРИАНТ 1004
НОМЕР 1,2,3,4,5,6,7,8.
Математика.
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
Облако тегов