Можно ли восемь мальчишек и 5 девченок рассадить за круглым столом
Можно ли восемь мальчишек и 5 девченок рассадить за круглым столом так, чтобв посреди любых 3 сидячих подрчд деток была ровно одна девочка?
Задать свой вопросПо условию задачки, за столом надобно рассадить 8 мальчишек и 5 девченок, т.е. всего 13 малышей.
Представим, что нам удалось рассадить деток так, что посреди 3 сидящих подряд малышей ровно одна девченка.
Выберем хоть какого из детей за столом и присвоим ему номер 1.
Остальным детям присвоим поочередные номера по часовой стрелке от 2 до 13.
Осмотрим тройки малышей с номерами
1, 2, 3; 4, 5, 6; 7, 8, 9; 10, 11, 12;
В каждой из этих троек обязано быть ровно 1 девченка. Означает, всего 4 девченки. Но так как всего девочек 5, то под номером 13 обязана быть девченка.
Мы проявили, что если детей возможно рассадить по обозначенному правилу, то выбрав любых 12 попорядку сидящих за столом деток, оставшийся ребёнок обязан быть девочкой.
Если выберем 12 деток с номерами 2, 3, ..., 13, то под номером 1 обязана быть девченка. Но ранее мы узнали, что под номером 13 обязана быть тоже девченка. Значит в тройке 13, 1, 2 окажутся как минимум 2 девченки. Получили противоречие. Как следует, рассадить деток по обозначенному правилу невероятно.
-
Вопросы ответы
Статьи
Информатика
Статьи
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.
Математика.
Химия.
Русский язык.
Разные вопросы.