А) Пароход, собственная скорость которого 22 км/ч, прошел за 1 ч
А) Пароход, собственная скорость которого 22 км/ч, прошел за 1 ч 15 мин по течению реки такое же расстояние, как и за 1 ч 30 мин против течения. Какова скорость течения реки? б) Моторная лодка за 2 ч против течения реки прошла расстояние, на 25% меньшее, чем за то же время по течению. Какова собственная скорость лодки, если скорость течения равна 2,5 км/ч? Найди лишнее данное в условии этой задачки.
Задать свой вопросЗадачка 1.
Пусть x км/ч скорость течения реки, тогда скорость парохода по течению (22 + x) км/ч, а против течения (22 - x) км/ч. Зная, что время движения парохода по течению одинаково (75 : 60) ч, против течения (90 : 60) ч, и при этом он проплыл однообразное расстояние по и против течения, составим и решим уравнение:
(22 + х) * (75 : 60) = (22 - х) * (90 : 60)
ОДЗ задачи: х 0
(22 + x) * (5 : 4) = (22 - x) * (3 : 2)
Умножим на 4 обе доли уравнения, тогда в левой части сократится 4 в знаменателе, а справа сократится двойка, но остается два в числителе.
(22 + x) * 5 = (22 - x) * 3 * 2
Раскрываем скобки.
110 + 5x = 132 - 6x
Переносим числа с иксами в правую часть, просто числа в левую часть, не запамятывая про смену символов.
11x = 22
x = 2 (удовлетворяет ОДЗ)
Таким образом, скорость течения реки равна 2 км/ч.
Ответ: 2 км/ч.
Задачка 2.
Пусть х км/ч скорость моторной лодки, тогда скорость передвижения лодки по течению равна (х + 2,5) км/ч, а против течения (х - 2,5) км/ч. Если представить условно расстояние, которое прошла моторная лодка по течению за S, то против течения оно будет одинаково 0,75S. Зная, что на путь и туда, и назад, лодка истратила однообразное время, составим и решим уравнение:
S : (x + 2,5) = (3 : 4) * S : (x - 2,5)
ОДЗ уравнения определяется условием:
x + 2,5
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.