Упростите выражение б)Sin(n/2-t)tg(-t) cos(n/2 t)

Упростите выражение б)Sin(n/2-t)tg(-t) cos(n/2 t)

Задать свой вопрос
1 ответ
  1. В задании дано тригонометрическое выражение sin(/2 t) * tg(-t) / cos(/2 + t), которого обозначим через Т. Упростим Т, предполагая, что рассматриваются такие углы t, для которых данное тригонометрическое выражение имеет смысл.
  2. Прежде всего, заметим, что функция у = tgх является нечётной функцией. Это означает, что для хоть какого х из области допустимых значений тангенса правосудно равенство tg(х) = tgх. Как следует, tg(t) = tg(t). Имеем Т = (sin(/2 t) * tg(t)) / cos(/2 + t) = (sin(/2 t) * tgt) / cos(/2 + t).
  3. Применим последующие формулы приведения sin(/2 ) = cos и cos(/2 + ) = sin. Тогда,  Т = (cost * tgt) / (sint). Беря во внимание, что tg = sin / cos, получим Т = (cost * sint / cost) / (sint) = 1.

Ответ: Если данное тригонометрическое выражение имеет смысл, то оно одинаково 1.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт