Сумма 2-ух чисел равна 46, а сумма их квадратов одинакова 1130.
Сумма двух чисел одинакова 46, а сумма их квадратов одинакова 1130. Найдите эти числа. Пожалуйста помогите решить, я перелазил куч веб-сайтов и подобных вопрос, но так и не сообразил, откуда выходит число 92y. Вот начало моего решения: Пусть x-1-ое число, y-второе число. Знаменито, что x+y=46 и x2+y2=1130. Составим и решим систему уравнений.
Задать свой вопросСходу вводим две переменные:
Пусть m - 1-ое число, n - второе число.
Исходя из критерий задачки, составим и решим систему из 2-ух уравнений с 2-мя неведомыми:
m + n = 46;
m^2 + n^2 = 1130;
Решать можно по-различному, решим же способом подстановки - выразим одну из переменных в первом уравнении системы, после чего выражение подставим во 2-ое уравнение:
n = 46 - m;
m^2 + (46 - m)^2 = 1130;
m^2 + 2116 - 92 * m + m^2 - 1130 = 0;
2 * m^2 - 92 * m + 986 = 0;
m^2 - 46 * m + 493 = 0;
D = 2116 - 1972 = 144;
m1 = (46 - 12)/2 = 17;
m2 = (46 + 12)/2 = 29.
Наши числа - 17 и 29.
-
Вопросы ответы
Статьи
Информатика
Статьи
Физика.
Геометрия.
Разные вопросы.
Обществознание.
Математика.
Химия.
Русский язык.
Разные вопросы.
Разные вопросы.
Математика.