В Ребяческом САДУ имеется 20 велосипедов - некоторые из них 3-х
В Ребяческом САДУ имеется 20 велосипедов - некие из их 3-х колесные, некие - 2-х колесные. Увсех велосипедов вместе 55 колес. Ск-ко 2-х колесных велосипедов в детском саду?
Задать свой вопросАлгебраический метод.
Пусть w количество трехколесных велосипедов. Тогда в ребяческом саду 20 w двухколесных велосипедов.
Поглядим, сколько колес у всех этих велосипедов.
3 * w + 2 * (20 w) = 3w + 40 2w = w + 40 (колес).
Сообразно условию, у всех велосипедов в сумме 55 колес. Мы можем составить уравнение.
w + 40 = 55.
Перенесем число 40 в правую часть уравнения.
w = 55 40;
w = 15.
Мы выяснили, что количество 3-колесных велосипедов одинаково 15.
Мы теснее знаем, что в детском саду 20 w двухколесных велосипедов. Подставим число 15 заместо w.
20 15 = 5 (велосипедов).
Итак, количество 2-колесных велосипедов одинаково 5.
Ответ: 5.
Арифметический метод.
Представим, все велосипеды 2-колесные. Велосипедов всего 20. Посчитаем общее количество колес.
2 * 20 = 40 (колес).
Итак, если бы все велики были двухколесными, у их было бы всего 40 колес. Но по условию общее количество колес одинаково 55. Посмотрим, сколько недостающих колес у нас вышло.
55 40 = 15 (колес).
Таким образом, если бы все велосипеды были двухколесными, у них было бы на 15 колес меньше. Следовательно, 15 велосипедов на самом деле 3-колесные, а не 2-колесные.
Велосипедов всего 20, и 15 из их трехколесные. Составим разность и выясним, сколько в детском саду 2-колесных велосипедов.
20 15 = 5 (велосипедов).
Итак, количество 2-колесных велосипедов одинаково 5.
Ответ: 5.
-
Вопросы ответы
Статьи
Информатика
Статьи
Физика.
Геометрия.
Разные вопросы.
Обществознание.
Математика.
Химия.
Русский язык.
Разные вопросы.
Разные вопросы.
Математика.