Найдите значения sin(2a),зная,что cos(a)=-0,8,и а-угол четверти

Найдите значения sin(2a),зная,что cos(a)=-0,8,и а-угол четверти

Задать свой вопрос
1 ответ
  1. В задании нужно найти значение тригонометрического выражения sin(2 * ) по знаменитому значению cos = 0,8. Не считая того, в задании утверждается, что угол принадлежит к III координатной четверти, то есть, справедливо следующее двойное неравенство: lt; lt; 3 * /2.
  2. Как знаменито в III координатной четверти sin lt; 0 и cos lt; 0. Воспользуемся формулой sin2 + cos2 = 1 (главное тригонометрическое тождество), которую перепишем в виде: cos2 = 1 sin2. С учётом того, что угол принадлежит к III координатной четверти, имеем: cos = (1 sin2). Тогда, cos = (1 (0,8)2) = ((1 0,64) = (0,36) = 0,6.
  3. Применяя формулу 2 * sin * cos (синус двойного угла), вычислим sin(2 * ) = 2 * (0,8) * (0,6) = 0,96.

Ответ: 0,96.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт