Чему равна площадь прямоугольника с гипотенузой 26 см, один из катетов
Чему одинакова площадь прямоугольника с гипотенузой 26 см, один из катетов которого равен 24 см
Задать свой вопросПлощадь прямоугольного треугольника можно отыскать, используя формулу:
S = 1/2 * a * b,
где a и b это катеты.
Так как по условию даны длины гипотенузы прямоугольного треугольника и одного из катетов, то, чтобы отыскать площадь треугольника, необходимо найти длину второго катета.
Для нахождения длины безызвестного катета, воспользуемся аксиомой Пифагора:
a^2 + b^2 = c^2,
где a и b длины катетов прямоугольного треугольника, c - гипотенуза прямоугольного треугольника.
Подставим данные по условию значения в формулу:
a^2 + 24^2 = 26^2.
Решим полученное уравнение:
a^2 + 576 = 676;
a^2 = 676 576;
a^2 = 100;
a = 100;
a = 10 см.
Найдем площадь треугольника:
S = 1/2 * 10 * 24 = (1 * 10 * 24)/2 = 240/2 = 120 (см^2.
Ответ: S = 120 (см^2).
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.