Найдите площадь основания конуса, если его образующая одинакова 9см и наклонена
Найдите площадь основания конуса, если его образующая одинакова 9см и наклонена к плоскости основания под углом 60 градусов
Задать свой вопросВ основании конуса лежит окружность. Ее площадь равна:
S = r, где r радиус окружности.
Радиус основания, образующая конуса и высота образуют между собой прямоугольный треугольник, в котором угол меж образующей и радиусом равен 60, а образующая является его гипотенузой. Найдем угол меж образующей и вышиной:
180 - 90 - 60 = 30.
Как известно, в прямоугольном треугольнике против угла в 30 лежит катет одинаковый половине гипотенузы. В данном случае против угла в 30 лежит радиус основания конуса, означает:
r = 9 / 2 = 4,5 см.
Сейчас можно отыскать площадь основания конуса:
S = * (4,5) = 20,25 63,62 см.
Ответ: площадь основания конуса предположительно одинакова 63,62 квадратным сантиметрам.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.