Группа путешественников отправилась в поход на 12 байдарках. Часть байдарок были

Группа путешественников отправилась в поход на 12 байдарках. Часть байдарок были двухместные,а часть трехместные.Сколько двухместных и сколько трехместных байдарок участвовало в походе,если группа состояла из 29 человек и все места были заняты? тема решение задач с помощью систем уравнений

Задать свой вопрос
1 ответ

1. Пусть Х - количество двухместных байдарок, а У - число трехместных.

Тогда Х + У = 12.

2. Количество туристов, которые разместились в двухместных байдарках составит 2 * Х человек.

А их количество в трехместных - 3 * У человек.

В задачке сказано, что группа состояла из 29 человек.

Тогда 2 * Х + 3 * У = 29.

3. Получили два уравнения с двумя безызвестными.

Это есть система уравнений.

Домножим обе части первого уравнения на 2.

2 * Х + 2 * У = 24.

Теперь из второго уравнения вычтем приобретенное.

2 * Х + 3 * У - 2 * Х - 2 * У = 29 - 24.

У = 5 трехместных байдарок.

Тогда Х = 12 - 5 = 7 двухместных.

Ответ: В походе было 7 двухместных байдарок и 5 трехместных.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт