1)Решение данного уравнения смотрится последующим образом:
7x - 14 = 0; Приравниваем выражение, стоящее в левой части, к нулю.
7x = 14; Переносим числа без икса вправо, а числа, содержащие переменную (икс), оставляем в левой части.
x = 14 / 7; Так как в левой доли уравнения-произведение, то для того, чтобы отыскать x, необходимо 14 поделить на 7. Т.е. правую часть представить в виде частного.
x = 2; Выполнив обыкновенные вычисления, обретаем значение переменной.
2)-6a + 4a =
Перед нами неполное квадратное уравнение. Для его решения выполним последующее:
-6a2 + 4a = 0; Приравниваем выражение, стоящее в левой доли, к нулю.
2(3a2 + 2a) = 0; Можно увидеть, что 6 и 4 делятся на 2. Означает можно вынести 2 за скобку.
-2(3a2 - 2a) = 0; Также можно вынести минус за скобку. Тогда необходимо поменять знаки перед предыдущим выражением на противоположные.
-2(3a2 - 2a) / -2 = 0 / -2;Упростим левую и правую часть. Для этого разделим их на -2.
(3a2 - 2a) = 0; Получаем данное уравнение.
a(3a - 2) = 0; Вновь таки заметим, что можно вынести а за скобку.
Перед нами творенье. Творенье одинаково нулю, когда один из множителей равен нулю. В нашем случае, множители а и (3a - 2). Получаем:
a = 0; (3a - 2) = 0;Далее действуем по тому же принципу.
3a = 2;
a = 2/3;
Ответ: 0; 2/3.
3)a - 4b =
Перед нами формула разности квадратов. Для её упрощения воспользуемся формулой сокращенного произведения. Которая имеет последующий вид: a2 - b2=(a - b)(a + b).
В нашем случае, перед неизвестной b стоит число 4, которое является квадратом числа 2 (22 = 4), следовательно, мы можем применить данную формулу внеся некие конфигурации.
a2 - 4b2=(a - 2b)(a + 2b).
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.