4. Многочлен tp + 1q + 4p + 4q тождественно равен:
4. Многочлен tp + 1q + 4p + 4q тождественно равен: а) (р + q)(1 + 4); б) (p + 1)(q + 4); в) (p + 4)(1 + q)
Задать свой вопросДля того, чтоб разложить на множители выражение p + q + 4p + 4q мы начнем с выполнения группировки слагаемых.
А сгруппировать мы их обязаны так, чтоб в результате мы получили схожие скобки, после вынесения из каждой общего множителя.
Давайте сгруппируем 1-ые два и заключительные два слагаемые и получаем:
p + q + 4p + 4q = (p + q) + (4p + 4q);
Первую скобку представим в виде творения 1 на скобку, а из 2-ой вынесем 4 как общий множитель:
(p + q) + (4p + 4q) = 1 * (p + q) + 4 * (p + q) = (p + q)(1 + 4) = 5(p + q).
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.