1. Решим систему уравнений:
9x - 14х = у;
9х - 14 = у;
2. Подставим значение у во 2-ое уравнение и решим систему способом подстановки:
9x - 14х = 9х - 14;
9x - 14х - 9х + 14 = 0;
9x - 23х + 14 = 0;
3. Найдем корешки, решив квадратное уравнение:
Вычислим дискриминант:
D = b - 4ac = ( - 23) - 4 * 9 * 14 = 529 - 504= 25;
D 0, означает:
х1 = ( - b - D) / 2a = (23 - 25) / 2 * 9 = ( 23 - 5) / 18 = 18 / 18 = 1;
х2 = ( - b + D) / 2a = (23 + 25) / 2 * 9 = ( 23 + 5) / 18 = 28 / 18 = 1 10/18 = 1 5/9;
Тогда:
9х - 14 = у;
если х1 = 1, то у1 = 9 * 1 - 14 = 9 - 14 = - 5;
если х2 = 1 5/9, то у2 = 9 * 14/9 - 14 = 14 - 14 = 0;
Ответ: у1 = - 5, х1 = 1, у2 = 1 5/9, х2 = 0.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.
Разные вопросы.
Обществознание.