Миша загадал N-значное число, все числа которого разны, а Игорь пробует

Миша загадал N-значное число, все числа которого разны, а Игорь пытается его угадать (Игорь знает, чему одинаково N). За один ход Игорь может избрать несколько разрядов числа, а Миша в произвольном порядке сообщает числа, стоящие в этих разрядах. Порядок, в котором извещать числа, избирает Миша. К примеру, если задумано число 67890, а Игорь спросил про числа в разрядах 1 и 5, то Миша может ответить как 6 и 0, так и 0 и 6. Для какого наибольшего числа N Игорь сумеет гарантированно выяснить число за 3 хода?

Задать свой вопрос
1 ответ
Пронумеруем разряды числа номерами от 1 до N. Пусть три хода Игоря выделяют подмножества разрядов M, M и M. Каждому уровню с номером k сопоставим тройку чисел s(k)=(a,a,a) по правилу a_i=0, если k\not\in M_i и a_i=1, если k\in M_i, где i=1,2,3. Назовем эту тройку сигнатурой разряда. Если для каких то двух разрядов c номерами k и m оказалось s(k)=s(m), то у Игоря нет никакой принципной способности найти какая цифра в какой позиции находится. Потому количество цифр, которое может найти Игорь за 3 хода, не превосходит количества разных троек s(k), т.е. не превосходит 2=8, и значит N8. И если Игорь желает определять своими ходами наибольшее количество разрядов, то ходы ему надо сочинять так, чтоб каждой сигнатуре принадлежал только один разряд. и MMM охватывало как можно больше разрядов. Если для какого-то разряда его сигнатура оказалась (0,0,0), т.е. этот разряд вообщем не был затронут ходами Игоря, то определить цифру в этом разряде невозможно, т.к. цифр всего 10 и 10gt;8. Т.е. Игорь может определять числа только в тех разрядах, которые принадлежат MMM. Означает N7. Покажем, что при N=7 огромного количества M, M и M можно избрать так, что каждой сигнатуре будет принадлежать только один разряд,  и означает 7 цифр Игорь сумеет всегда найти, к примеру,  с подмогою последующих ходов:
M=1,2,3,7, M=1,5,6,7, M=3,4,5,7 (см. набросок).
В ответе Миши будут названы числа, стоящие в разрядах с подходящими номерами.
Тогда та цифра, которая будет фигурировать во всех 3-х ответах Миши, находится в 7-ом разряде, т.к. s(7)=111 и с таковой сигнатурой этот разряд единственный.
Та цифра, которая будет фигурировать в 1-ом и 2-ом, но не в 3-м ответе Миши находится в разряде с номером 1 (см. набросок), т.к. s(1)=110 и вновь, с этой сигнатурой имеется только один разряд.
Цифра, которая будет фигурировать, например в 3-м ответе Миши, но не в 1-ом и не во 2-ом, соответствует позиции 4, т.к. s(4)=001 и т.д. Итак, по ответам Миши мы определяем сигнатуру каждой упомянутой цифры (глядим, в каких ответах эта цифра есть, а в каких ее нет), и поскольку сигнатура совершенно точно связана с номером разряда, мы определяем позицию этой цифры.

Заметим, что если бы число было записано в восьмеричной системе счисления, то Игорь мог бы определить все числа при N=8, т.к. определив семь позиций у него оставалась бы одна не задействованная цифра на 8-ую позицию.

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт