На дощечке в ряд поставлены 2018 точек. Миша и Лёша по
На доске в ряд поставлены 2018 точек. Миша и Лёша по очереди стирают одну либо две примыкающих точки (Миша ходит первым). Выигрывает тот, кто стирает последнюю точку. Лёша утверждает, что он придумал для себя беспроигрышную стратегию. Прав ли Лёша? Помогите пожалуйста!!!!!
Задать свой вопрос1 ответ
Евгения Севоян
Докажем, что стратегия есть у Миши. Сотрём первым ходом две средние точки (1009 и 1010), а после этого будем симметрично отвечать на ходы Лёши. Так как после каждого хода Миши ряд будет симметричен, а после хода Лёши - нет, то одолеет Миша, так как окончательная ситуация симметрична.
Ответ: не прав.
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
Игорь 14 лет назад был на 8 лет моложе, чем его
Математика.
Два тела массами m1 и m2 находящие на расстоянии R друг
Физика.
В сосуде 4целых одна пятая литр воды что бы заполнить сосуд
Математика.
Двум малярам Диме И Олегу поручили выкрасить фасад дома они разделили
Разные вопросы.
найти порядковый номер 41Э если в ядре 20 нейтронов
Разные вопросы.
в ряду натуральных чисел 3, 8, 10, 24, … 18 одно
Математика.
Предприятие по производству с/хоз продукции на производство затратило 3527000 руб Валовый
Разные вопросы.
Математика, задано на каникулы. ВАРИАНТ 1004
НОМЕР 1,2,3,4,5,6,7,8.
Математика.
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
Облако тегов