Найти сумму цифр натурального двузначного числа, у которого число десятков на

Отыскать сумму цифр естественного двузначного числа, у которого число десятков на единицу больше числа единиц, а творение его цифр на 45 больше тройного числа его 10-ов.

Задать свой вопрос
1 ответ
Пусть х - число 10-ов двузначного числа, 
тогда х-1 - число единиц этого числа.
х(х-1) - творенье числа десятков и числа единиц, 
3х - утроенное число 10-ов.
По условию задачки составим уравнение:
x(x-1)-3x=45
x-x-3x-45=0
x-4x-45=0
D=(-4)-4*1*(-45)=16+180=196=14
x=(4+14)/2= 18/2=9;   x=(4-14)/2=-10/2=-5N
x=9 - число десятков
х-1=9-1=8 - число единиц
9+8=17 - сумма числа десятков и числа единиц
Ответ: 17

, оставишь ответ?
Имя:*
E-Mail:


Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт