Сколько нулей стоит в конце числа, одинакового творению естественных чисел от
Сколько нулей стоит в конце числа, одинакового творению естественных чисел от 1 до 1212?
Задать свой вопросОтвет:
300
Пошаговое разъясненье:
Нули возникают при умножении 2 на 5. Цифр 2 очень много, в каждом четном числе, цифр 5 намного меньше.
Потому количество 0 одинаково количеству цифр 5 в множителях.
5, 10, 15, ..., 1215 - это 243 раза цифра 5.
25, 50, 75, ..., 1200 - это 48 раз по две числа 5.
125, 250, 375, ..., 1000 - это 8 раз по три числа 5.
625 - это 1 раз по 4 цифры 5
Всего 243 + 48 + 8 + 1 = 300 нулей.
Ответ: 300
Пошаговое объяснение:
Нули в конце числа 1212! образуются из творенья сочиняющих множителей пятерок и двоек. Т.к. множителей двоек будет больше, чем пятерок, то нам нужно посчитать сколько множителей пятерок будет в числах от 1 до 1212.
Пятерки будут в числах кратных 5 и всем ступеням пятерки до 5^4 = 625 (5^5 = 3125 gt; 1212 и чисел кратных 3125 у нас теснее не будет). Числа кратные 5 посчитаем по одному разу, числа кратные 25 тоже по разу (одну из их пятерок мы теснее учли при подсчете кратных 5), еще по разу числа кратные 125 (5^3) и 625 (5^4).
Общая формула количества пятерок будет:
где [x] значит целую часть числа. В итоге получим:
Т.е. во всех числах нашего факториала наберется 300 множителей пятерок, а как следует в итоговом числе будет 300 нулей.
-
Вопросы ответы
Статьи
Информатика
Статьи
Математика.
Физика.
Математика.
Разные вопросы.
Разные вопросы.
Математика.
Разные вопросы.
Математика.
Физика.
Геометрия.