1 ответ
Витек Сопоцько
Пусть a = x/2
sin(x) = 2sin(a)cos(a);
cos(x) = cos^2(a) - sin^2(a)
1/cos^2(x) = 1 + tg(a)
8sin(x) + cos(x) = 4
8*2sin(a)cos(a) + cos^2(a) - sin^2(a) = 4
Разделим обе части уравнения на cos^2(a):
16*tg(a) + 1 - tg^2(a) = 4*(1 + tg^2(a))
4 tg^2(a) + tg^2(a) + 3 - 16 tg(a) = 0
5 tg^2(a) - 16 tg(a) + 3 =0
D = 16^2 - 4*5*3 = 196 = 14^2
tg(a) = (16 + 14) / 10; tg(a) = (16-14)/10
tg(a) = 3; tg(a) = 1/5;
a = arctg(3) + n, nZ; a = arctg(1/5) + k, kZ
x/2 = arctg(3) + n, nZ; x/2 = arctg(1/5) + k, kZ;
x = 2 arctg(3) + 2 n, nZ; x = arctg(1/5) + 2 k, kZ;
Ответ: 2 arctg(3) + 2 n, nZ; arctg(1/5) + 2 k, kZ;
sin(x) = 2sin(a)cos(a);
cos(x) = cos^2(a) - sin^2(a)
1/cos^2(x) = 1 + tg(a)
8sin(x) + cos(x) = 4
8*2sin(a)cos(a) + cos^2(a) - sin^2(a) = 4
Разделим обе части уравнения на cos^2(a):
16*tg(a) + 1 - tg^2(a) = 4*(1 + tg^2(a))
4 tg^2(a) + tg^2(a) + 3 - 16 tg(a) = 0
5 tg^2(a) - 16 tg(a) + 3 =0
D = 16^2 - 4*5*3 = 196 = 14^2
tg(a) = (16 + 14) / 10; tg(a) = (16-14)/10
tg(a) = 3; tg(a) = 1/5;
a = arctg(3) + n, nZ; a = arctg(1/5) + k, kZ
x/2 = arctg(3) + n, nZ; x/2 = arctg(1/5) + k, kZ;
x = 2 arctg(3) + 2 n, nZ; x = arctg(1/5) + 2 k, kZ;
Ответ: 2 arctg(3) + 2 n, nZ; arctg(1/5) + 2 k, kZ;
, оставишь ответ?
Похожие вопросы
-
Вопросы ответы
Новое
NEW
Статьи
Информатика
Статьи
Последние вопросы
Игорь 14 лет назад был на 8 лет моложе, чем его
Математика.
Два тела массами m1 и m2 находящие на расстоянии R друг
Физика.
В сосуде 4целых одна пятая литр воды что бы заполнить сосуд
Математика.
Двум малярам Диме И Олегу поручили выкрасить фасад дома они разделили
Разные вопросы.
найти порядковый номер 41Э если в ядре 20 нейтронов
Разные вопросы.
в ряду натуральных чисел 3, 8, 10, 24, … 18 одно
Математика.
Предприятие по производству с/хоз продукции на производство затратило 3527000 руб Валовый
Разные вопросы.
Математика, задано на каникулы. ВАРИАНТ 1004
НОМЕР 1,2,3,4,5,6,7,8.
Математика.
Имеются три конденсатора емкостью С1=1мкФ, С2=2мкФ и С3=3мкФ. Какую наименьшую емкость
Физика.
Из точки м выходят 3 луча MP MN и MK причём
Геометрия.
Облако тегов