найти наибольшее и меньшее значения функции на интервалу y=x+x-2x- если x

Найти наивеличайшее и меньшее значения функции на интервалу y=x+x-2x- если x э [-2;2]
Помогите буду благодарен

Задать свой вопрос
1 ответ
Дана функция y=x+x-2x-.
Отыскать наибольшее и меньшее значения функции на промежутке [-2;2].

Обретаем производную функции:
y' = x
+x - 2 и приравняем её нулю.
x +x - 2 = 0.
Квадратное уравнение, решаем условно x: Разыскиваем дискриминант:
D=1^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(9-1)/(2*1)=(3-1)/2=2/2=1;x_2=(-9-1)/(2*1)=(-3-1)/2=-4/2=-2.
Получили 2 критичные точки и 3 интервала монотонности функции..
Находим знаки производной на этих промежутках:
x =      -3       -2       0       1        2
y' =      4        0       -2       0       4.
Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса изменяется на минус - точка максимума, а где с минуса на плюс - точки минимума.
В точке х = -2 максимум функции у = 3,
в точке х =  1 минимум функции у = -1,5.
Проверяем значение функции в точке х = 2.
у = (1/3)*8 + (1/2)*4 - 2*2 - (1/3) = 0,333333.
Остаются выделенные значения как максимум и минимум на промежутке [-2; 2].
, оставишь ответ?
Имя:*
E-Mail:


Последние вопросы

Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт