Вычислите угол между биссектрисой и медианой, проведенными из прямого угла прямоугольного

Вычислите угол между биссектрисой и медианой, проведенными из прямого угла прямоугольного треугольника площадью 93 / 2 и гипотенузой 6.

Задать свой вопрос
2 ответа

медиана делит треугольник на два равновесных треугольника

(площади у их одинаковы)

также знаменито: медиана к гипотенузе равна половине гипотенузы...

т.е. мы получим два равнобедренных треугольника с одинаковыми гранями по 6/2 = 3 и площади этих треугольников одинаковы по 93/4;

один треугольник тупоугольный с 2-мя одинаковыми углами по (45-х),

иной остроугольный с 2-мя одинаковыми углами по (45+х),

где х --угол меж медианой и биссектрисой...

для хоть какого из этих 2-ух треугольников можно записать его площадь:

93/4 = 0.5*3*3*sin(90+2x) либо 93/4 = 0.5*3*3*sin(90-2x)

3/2 = cos(2x)

2x = 30

х = 15

решение на фото понизу

, оставишь ответ?
Имя:*
E-Mail:


Последние вопросы

Добро пожаловать!

Для того чтобы стать полноценным пользователем нашего портала, вам необходимо пройти регистрацию.
Зарегистрироваться
Создайте собственную учетную запить!

Пройти регистрацию
Авторизоваться
Уже зарегистрированны? А ну-ка живо авторизуйтесь!

Войти на сайт